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Neutrino mass
Oscillation data gives a lower bound

Minimum mass for Normal Hierarchy

Cosmology can detect the neutrino mass scale

∑ mνi ≿ 0.058eV

∑ mνi ≿ 0.098eVMinimum mass for Inverted Hierarchy

Cosmology can rule out Inverted Hierarchy

Δm122 = 7.54  +0.26
-0.22 ×10-5 eV 

|Δm132 | ≃ 2.4±0.06  ×10-3 eV 

Information about the neutrino mass splitting is in cosmological data, but it 
seems to out of reach to detect



Neutrino mass effects on 
cosmological 
observables



The existence of neutrino mass changes ρν (a), and therefore 
H(a), DA(a)

Pan & Knox 2014
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At fixed Ωm, increasing the mass of neutrinos, Mν, decreases 
the amount of clustering matter below kfree-streaming ∼ aHmν/Tν

And changes the evolution of density perturbations:
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Observables: Cluster Abundance

sensitive to:
- change in amplitude of density 

fluctuations at redshift(s) of 
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degeneracies:
- Ωmh2 (total matter density)
- As (amplitude of primordial 
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- dark energy/modified gravity

systematics:
- cluster mass measurements/

survey completeness

- ?

- modeling the cluster abundance

Loverde 2014
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Other Observables:

 - CDM/neutrino relative velocities 

Zhu, Pen, Chen, Inman, Yu  2014



Other Observables:

 - pairwise kSZ statistics 

Mueller, de Bernardis, Bean, Niemack 2014
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Opportunity:
Detect neutrino mass scale!

Challenge: 
Convince yourself that the detection is real

- compelling handle on astrophysical and observational systematics and 
possible degeneracies

- multiple probes 

- multiple probes sensitive to different “neutrino-y” effects

Discover sterile neutrinos, an inconsistency with standard 
cosmological model, and/or neutrino oscillation data!



Questions
How best to look for new physics (sterile neutrinos, an 

inconsistency with standard cosmological model, and/or 
neutrino oscillation data)?

How to convince yourself that the detection is real?

How to get more info than ∑m𝜈?


